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slutions of higher-spin wave equations in external
gectromagnetic plane-wave fields

W Becker
Institut fiir Theoretische Physik der Universitét Tiibingen, 74 Tiibingen, Germany

Received 30 May 1975, in final form 1 August 1975

Abstract. The Proca equation for a vector particle with an arbitrary magnetic dipole and
electric quadrupole moment and the Rarita-Schwinger equation in the presence of an
external electromagnetic plane-wave field are reduced to systems of ordinary differential
equations which can be solved in special cases. The propagation behaviour of the solutions
is investigated and found to exhibit in general the inconsistencies predicted by Velo and
Zwanziger. Insome cases there are in addition tachyonic modes. Characteristic differences
appear for linear and circular polarization of the external field.

1 Introduction

Since the work of Velo and Zwanziger (1969a, b, 1971) it is known that wave equations
fescribing particles with spin 1 or more are beset with inconsistencies which appear
dready on the classical level. The propagation velocity of the solutions may exceed the
geed of light or the solutions do not describe wave propagation at all. According to
Veloand Zwanziger these phenomena are expected to occur for spin 1 particles with an
womalous quadrupole moment and all particles with spin greater than 1. The results of
Velo and Zwanziger are based on the method of characteristics which determines at
tvery point the ray cone of wave propagation. It has been emphasized by Mathews and
Seellfaraman (1973) that there may be difficulties even if the ray cone determined in this
%y s inside the light cone: the limiting velocity obtained from the ray cone may
#nally turn out to be the minimum instead of the maximum velocity. In fact, this kind
mch)'o_nic behaviour has been found for a vector particle with anomalous dipole
Wment in the presence of a constant magnetic field (Tsai and Yildiz 1971, Mathews

1974), where the ray cone coincides with the light cone.
mdBm@e of ti}e cgmplexity of higher-spin equations few explicit solutions are known
andIllf}st Investigations concentrated on constant external fields (see also Minkowski
Siler 1971). Thus it may be of interest to have more explicit solutions, particularly
mu‘?:\i’ceonstant external fields. Especially one might look for tachyonic modes which
et detected b.y the method of characteristics. One could also examine to what
212y cone which exceeds at some points the light cone and lies inside at others,

y influences the wavefunction.

m;‘:efglil.plane-wave ﬁelds‘ allow for a surprisingly simple solution of the corres-
ol io II:n-Gordox‘m and DlI:aC equations (Volkov 1935). An anomalous magnetic
2 - ntcan be mclu(.ied in the latter (Becker and Mltter 1974). The vector case
Omalous magnetic moment has been treated similarly (Becker and Mitter

149



150 W Becker

1975, to be referred to as I; the vector case with minimal coupling has also been solyy
in the Duffin-Kemmer formalism by Federov and Radyuk 1975). In tl}e present pape;
we shall deal with the simplest cases which are relgvant for the discussion of the
inconsistencies, ie the Proca equation with an electric quadrupole coupling ang the
Rarita-Schwinger equation. )

In § 2 the solution of 1 is extended to include the quadrupole coupling. The resulting
system of ordinary differential equations can be sqlvef! for.a monochromatic field wigy
circular polarization (MCP) and for linear polarization, 3f the anpmalous magnete
moment has the particular value p=1. In § 3 the Rarita-Schwinger equation fy
circular as well as linear polarization is reduced to two systems of four Ordinary
differential equations, each, which can be solved for mcp {md 'for a constant crossed
field. In §4 the propagation behaviour of the solutions is discussed. For mce we
recover all the results of Velo and Zwanziger and, in addition, for the vector meson with
quadrupole coupling, some modes come out to be tachyonic. On the o.tl'ler hand, for
linear polarization we show in one case and suspect in others that the limiting velocities
are causal. For spin 2 the results for a constant crossed field coincide with mcp.

2. The Proca equation
The Proca equation for a vector particle with an anomalous magnetic dipole moment

and an additional electric quadrupole moment characterized by the dimensionless real
constants g and g, respectively, in an external electromagnetic field reads

(K> = 7)Y, + 7, " +ieuF,, "—;‘j—%(w"op,,“+o“,,ywp)w"=o @

where m, =id, —€A,, Q,., =9,.F,, and we have already omitted terms quadratic in
Q,., which vanish in a laser field due to F, F** =0. Equation (2.1) incorporates the
subsidiary condition

T~
-2
2

K> —ie(1 - p)m Py, —%mt(wpow +OQ*m ), =0

We specialize now to an external plane-wave field

A, (x) = ae, Al(§), E=kx,

ke; =0, e, =8, (i=1,2). @3
Using an ansatz with a Volkov exponential
. (clp) =exp(-ipx +3 [ecmaereaier)ne g 0
inserting (2.2) into (2.1) and introducing the quantities

Ds=«k,¥*  D,=pke,¥*+(p - eaA)k, ¥* @
we arrive at the simple system of equations

Di=%D,  D=-%'D, 08
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1
_e€a . _ sagpk 2.7)
7—2K(1 », 8 2«3 (

aithe prime denotes differentiation with respect to €. (2.6) is almost identical with the
obtained earlier (1(12)). The essential differences are that &, is now complex
gidepends on p. The latter point will turn out to become crucial for the question of

sl propagation.
We find again that the positive quantity

3
K=Y DD} (2.8)
i=1

seoastant.
Special solutions of the system (2.6) can be obtained in the case of a monochromatic
phane wave with circular polarization (McP). Rewritten in terms of
di = 'YA, - iﬁF,, X = diD,', Y = 9",D, (29)

gesystem (2.6) has constant coefficients. The solutions are proportional to exp(iAé)
viere A is specified by

A—(1+y*+891-2y5=0 (2.10)

vithreal zeros for all values of y and 8. For a monochromatic linearly polarized (MLP)
plne wave the system (2.6) is reminiscent of Mathieu’s differential equation. Due to
Foguet’s theorem there are solutions of the form

D= e“gdi(f )

¥ith periodic d, d,(£ +2) = d,(£) and, as a consequence of (2.8), real A. If y=0,ie
#=1,the system is immediately solved for arbitrary F and yields (F,=F, F,=0)

D,=d, e—i8F+d1 &IF
D;=d;e % -4, e'F (2.11)
D, = constant.

Mﬁf Gase we have a periodic solution for periodic F. Analogy with Mathieu’s
®uation suggests that this happens also for other particular values of y and 8.

M The Rarita-Schwinger equation
Ih‘Rim't"*-SChWinger equation implies the constraints (Velo and Zwanziger 1969a)

€
W =T Y5V E, (3.1)

€
Tl = 3,2 (7 +3K) Vs e Fol, (3.2)
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When these constraints are resubstituted, the equation takes the following form, w4
is a true equation of motion

€
(#_ K)q”ﬂ- ""('ﬂ'“ +%KYM)§;E ‘YS‘Yvew'\FaAdelpv = 0- (3.3)

(3.3) has to be solved for the v and i components and the u componentf is then obtaipsg
from (3.2). The solution is most conveniently achieved by splitting off the Volkey
exponential as above (equation (2.4), where ¥, (£) now denotes a spinor-yector) apg
making use of the projection technique introduced earlier (Becker and Mitter 1974

The quantities (i=1, 2)
; 1
NOg)= n(—(ps -€eaA)¥, - ‘I';) (34
pv

are found to satisfy a system of first-order differential equations where the algebra is
reduced to 1, v, o =iv,y,. With an ansatz

N?=(@P+b v +cP0)v.40 (35
where i, denotes a constant spinor, the system reads explicitly
a”"=3vFp? - 3vFb" - aF(€4c™ —1a™) =0
¢V~ LivFeubi - jivFeaby - aF (exa™ —ic?) =0 (36)
b +3vFi(a® ~icV¢y) +ivFa? —fivFieuc® +iaF (b + b - 5,5{") =0 .
with

€a _€’a’pk 6

y=—

’ a= 4
K 9«

So we have eight scalar functions as is necessary for the description of spin  particles.
The remaining components of ¥, (¢) can be obtained from these by purely algebraic
operations.

Both in the McP case and for linear polarization the system (3.6) can be further
reduced. In the mcp case, for

A=A @£, B.=F,(a“+c")
C.=A(F, £iA)bY, D.=F(F, +iA,)bY

we obtain two systems of four equations, each, with constant coefficients. With &8

1 We use the following notation for the light-like components of a vector a,:
a,=h,a", a,=n,a", a;=—e,a*
where n,,, £, ¢,, are defined by the plane-wave field (2.3)

"

=1 . 1 .1
ey -Lty RN Ay =72(1,=n).
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s expli(p — «)¢] the characteristic polynomial becomes
0B - 1+ £ p(2B +47) + B4 - B (1 +5 V) F5v B +5v" =0,
;;2# p’ ( ﬁ 9 ] (3.8)
g=a¥l
s of which are always real. For linear polarization (F; = F, F, = 0) the reduction
asfor the combinations

A1=71§(a(”—ic(2)), A,=aP+ic?
4 1
As=b7, A4=:/§(b(1”—b§2))
3.9
Al~(v/V3)FA;=0 (3.9)
AL—(2v/V3)FA;— (v/V3)FA,+2iaF*A,=0
A4+ (v/V3)FA,+3vFA, =0
A4+ (v/V3)FA,+2iaF? A, =0.
Teeother system obtained for
A=—(1/V3)@®+ic),  A,=a®-ic?
As=eph), Ay=(1/V3)(b5"+b7)
geeswith (3.9). Equations (3.9) imply a conservation law
4
Y A,A¥=constant (3.10)
i=1

wh the consequence that, as in the MLP vector case, solutions of the form
A~exp(ird)a,(¢) with periodic a; have real A.
hFor the constant crossed (cc) field case (F = 1) we have A, ~exp(iA€) with A given

M+4aA® +0%(4a2 -0 -2 o) +173v —40%) =0 (3.11)

whfour real solutions for any values of « and ».

““'Plgaﬁon behaviour of the solutions

miw of dispersion which governs the propagation of the particles, ie the relation
%N the components of momentum replacing p°=«? in the external field, is
by Fourier transforming the wavefunctions (2.4) and (3.4), respectively

¥u(plp) = J d*x exp(ipx)y, (x|p"), p?=k> (4.1)

L% .
eternal field is monochromatic this can be done explicitly by expanding the
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field-dependent part of the exponential according to

w3z [ sezpaterventten)

r 2.2 ©
rp-i55e) T In@explim(e+r)

m=—co

for MCP A, =cos §, A, =—sin § where Le" = (ea/pk)(p, +ipy),

exp( -i:;f«f) MZ_Q e I_Z_w =1 J,( ) “2’(€:£1>

42
forMLP A, =cos § A, =0

= Eo dm e ‘”‘p[epa1 (3pk _”'>]¢(Z('" _E%>)

for cc A, = £ A, =0, where z = (2pk/e’a®)'"> and ¢ is the Airy
| function in the notation of Ritus (1972).

All solutions obtained so far for the remaining part ¥, (£) are sums of terms propor-
tional to

e*d(¢)=3d, e (43

where the periodic part has been expanded in a Fourier series. In all cases we obtain for
the law of dispersion

k(149 MCP
(Pmsn +AK)Y =2 = k¥ (1+317) MLP 44
k* cc.

Here p.. = p+(m+ n)k denotes the Zeldovich (1967) quasi-momentum. Obvious},
all quasi-momenta fulfil the same law of dispersion and therefore from now on the index
on p will be omitted. In all cases of special interest we will have

A=ao+T 2K @43
20

where A, is independent of p and may be absorbed in the definition of the quas-
momentum,

The group velocity now turns out be

Y (e p(1+I)~Tn(np) 48
o(p) pPo (1+1) (r”i[(l+F)(p2+xi)—1“(np)2]l/z) ¢

with n a unit vector in the direction of k, ie k, = (1, n). In the directions parallem
antiparalle] and transverse to the wavevector n, equation (4.6) reduces to (up t0 terms
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#Nderofl/Pz)T
[ p _(1~+I‘)Ki) for p~
T+—_I‘ip(1+l")< 2’ e
g(p)= R (47)
P _f_*_) £ =0
1+I“:tp\/(1+I‘)(1 2 or pn

shere p=|pl. From (4.7) the limiting velocities v, can be read off while the relative
sm of the next-to-leading term determines whether the modes are normal or
wehyonic. The results are summarized in the following table:

p~n pn=0
r>1 Voo = 1 OF v < | (tachyonic) Vo<1
1>I'>0 Vo =10r v<1 Vo<1
0>I>-1 Vo=10r 1>1 Vo> 1
r<-1 v =1 (tachyonic) or v >1 no propagation

The two values in the first column correspond to the different signs in equation (4.7). In
the transverse direction in both cases the same absolute value of the limiting velocity
obtains. For ['=1(T"=—1) the limiting velocities vanish (become infinite) in particular
directions.

The discussion of the propagation behaviour of the spin 1 and 3 particles now
amounts to writing down the respective values of I'. We have tacitly assumed that I' is
real. Infact, all characteristic exponents corresponding to the solutions obtained in §§ 2
ad 3 fulfil this requirement, which is necessary for hyperbolicity. The vector meson
without quadrupole moment behaves perfectly causal: in the Mcp case the characteristic
exponents A =0, /(1 + v*) which are the solutions of (2.10) do not depend on pk and
thesolutions for MLP are periodic, ie T' = 0 in both cases. For non-vanishing quadrupole
moment the case y =0, ie u = 1, is distinguished by its simplicity. For mcp we have
A=0,£V(1+ &%) which fits the ansatz (4.5) for either small or large 6. In the latter case

r =ivg(§)2. 4.8)

?S.is‘he]imit, even for y # 0, if pk becomes large. So we have all kinds of peculiarities
discussed above, The loss of hyperbolicity which occurs if ['<~—1 agrees with a
&teral theorem due to Velo (1975). This theorem states hyperbolicity of a system

e «js equivalent to (2.1) under some conditions which reduce in the plane-wave field

2
€
Kz—% 2 (QOij)2 =€, >0.
i<j

This yields 2 , ,
!4.8))” g(]i,s I"<1 as a sufficient condition for hyperbolicity. The fact that T (equation

fear with respect to » in connection with the preceding table reflects an

Midoes make much

sense to di : : .
outy for large A wh iscuss the whole dependence on p since in general (4.5) will turn out to be

ich in turn generally means large p.
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observation made by Jenkins (1973b) for spin 1 theories: if the limiting velocity
below the speed of light for some value of the coupling constant it exceeds it for the
opposite value.

On the other hand for MLP and y = 0 we have the periodic solutions (2.11) which g,
not show any inconsistencies for arbitrary values of I'. The solutions are g
non-periodic as soon as y # 0. In the limit of large pk, however, if y can be neglecteqy
comparison to 8, we expect the solutions to approach again (2.11). This would meg
that the limiting velocities agree with the speed of light. Tachyonic modes will probabiy
exist.

For spin 3 particles and McP we have in the limit of large & two double zeros of (38,
so that A =0, —2a. We recover completely the results of Velo and Zwanziger (1969a),
an ordinary ray (A =0) with a causal and an extraordinary ray

2vw\?
A=—"2a I'= —(3_'() 49

with an acausal limiting velocity as well as loss of hyperbolicity if I'<—1. Note the
definite sign of I in contrast to equation (4.8). The extraordinary ray exhibits tachyonic
behaviour in either of the parallel directions.

For MLP we have no explicit solutions of the system (3.9). Generally, the solutions
will be non-periodic. Asin the vector MLP case, however, if in the limit of very large pk
the terms proportional to v can be neglected, we have the simple periodic solutions
A, ,=constant, A, ,~exp(—2ia f F?). This argument, if correct, would indicate a
causal limiting velocity but not exclude tachyonic modes.

For the constant crossed field the results agree with those for mcp. For large e,
equation (3.11) has the double zeros A =0, —2a, so that I is given by (4.9) as before.

5. Conclusions

For a vector meson with quadrupole coupling and a spin 3 particle in an external M?
field we have recovered all the results of Velo and Zwanziger: existence of ordinaryras
and extraordinary rays which exhibit acausal propagation. If the external field exceeds
some critical value some modes fail to propagate in the transverse direction and/or
become tachyonic with a causal limiting velocity in the longitudinal directions.

In the case of linear polarization the results are quite different. In particular %
should compare the results for the vector case with y =0, where we have an expli!
solution for both polarizations. Whereas for circular polarization the complet
catalogue of inconsistencies is observed, no vestiges of the locally acausal structure o
the ray cones can be seen for linear polarization. Obviously the structure has bee?
averaged out in calculating the group velocity. This does not necessarily mean thal
acausal behaviour cannot be observed even in this case: one would have to use ¥a¥%
packets which are localized to approximately the region of one wavelength of ¢
plarie-wave field in their frame of reference. For such wave packets the concep!
group velocity becomes meaningless. Since the wave packets would decay very rapi™>
it is not clear, however, if acausal behaviour can be observed even in prinCiPle-
reason for the different behaviour in circularly and linearly polarized fields appeaﬁ“f
be that the circularly polarized field resembles more a constant field than the lines®
polarized one, since its absolute value is constant. Hence its influence cannot
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averaged out and the results agree, in fact, with those of the constant crossed field

h . 3
pipcaseof $pin 2. . N
‘;g;parent absence of inconsistencies for linear polarization is also interesting

' to an equivalence shown by Jenkins (1973a, b) for the vec.tor case: the ray
- ofthe classical field equation agree with the light cone if and only if the S operator
spequantized theory is Lorentz invariant, ie normal independent. The. fact t‘hat the
y acavsal structure of the ray cones is not reflected in the group velocity, raises the
“%ion to what extent the resulting non-covariance of the S operator can be observed

3§ matrix elements. . .
1tshould be noted, finaily, that a further difficulty, namely a non-covariant loss of

pestraints in @ particular frame of reference (Jenkins 1974), does not show up in the
axof an external plane-wave field.
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