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Abstract. The Proca equation for a vector particle with an arbitrary magnetic dipole and 
electric quadrupole moment and the Rarita-Schwinger equation in the presence of an 
external electromagnetic plane-wave field aFe reduced to systems of ordinary differential 
equations which can be solved in special cases. The propagation behaviour of the solutions 
is investigated and found to exhibit in general the inconsistencies predicted by Vel0 and 
Zwanziger. In some cases there are in addition tachyonic modes. Characteristic differences 
appear for linear and circular polarization of the external field. 

khework of Vel0 and Zwanziger (1969a, b, 1971) it is known that wave equations 
f ibing particles with spin 1 or more are beset with inCOnSiStencieS which appear 
My on the classical level. The propagation velocity of the solutions may exceed the 
p e d  of light or the solutions do not describe wave propagation at all. According to 
VehandZwanziger these phenomena are expected to occur for spin 1 particles with an 
mmalousquadrupole moment and all particles with spiil greater than 1. The results of 
Vdo and Zwanziger are based on the method of characteristics which determines at 
Mrypoint the ray cone of wave propagation. It has been emphasized by Mathews and 
ktharaman (1973) that there may be difficulties even if the ray cone determined in this 
QY is inside the light cone: the limiting velocity obtained from the ray cone may 
u l y t u m  out to be the minimum instead of the maximum velocity. In fact, this kind 
of Qchyonic behaviour has been found for a vector particle with anomalous dipole 
merit in the presence of a constant magnetic field (Tsai and Yildiz 1971, Mathews 
l94), where the ray cone coincides with the light cone. 
Because of the complexity of higher-spin equations few explicit solutions are known 
most investigations concentrated on constant external fields (see also Minkowski 

aod%ler 1971). Thus it may be of interest to have more explicit solutions, particularly 
hwn-Qnstant external fields. Especially one might look for tachyonic modes which 
gawtbe detected by the method of characteristics. One could also examine to what 
ertentaray cone which exceeds at some points the light cone and lies inside at others, 
attoally influences the wavefunction. 

'*mal Plane-wave fields allow for a surprisingly simple solution of the corres- 
pklding Uein-Gordon and Dirac equations (Volkov 1935). An anomalous magnetic 

can be included in the latter (Becker and Mitter 1974). The vector case 
anomalous magnetic moment has been treated similarly (Becker and Mitter 
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1975, to be referred to as I; the vector case with minimal coupling has also beensolvcd 
in the Duffin-Kemmer formalism by Federov and Radyuk 1975). In the presentpapcr 
we shall deal with the simplest cases which are relevant for the discusion of 
inconsistencies, ie the Proca equation with an electric quadrupole coupling and Q 

Rarita-Schwinger equation. 

system of ordinary differential equations can be solved for a monochromatic field* 
circular polarization (MCP) and for linear polarization, if the anomalous magne6c 
moment has the particular value p = 1. In 0 3 the Rarita-Schwinger equation for 
circular as well as linear polarization is reduced to two systems of four ordinq 
differential equations, each, which can be solved for MCP and for a constant ~rw 
field. In 0 4 the propagation behaviour of the solutions is discussed. For MCQ 
recover all the results of Velo and Zwanziger and, in addition, for the vector mesonM 
quadrupole coupling, some modes come out to be tachyonic. On the other hand, for 
linear polarization we show in one case and suspect in others that the limiting velocities 
are causal. For spin 5,  the results for a constant crossed field coincide with MO. 

In 0 2 the solution of I is extended to include the quadrupole coupling. The 

2. Tbe Proca equation 

The Proca equation for a vector particle with an anomalous magnetic dipole moment 
and an additional electric quadrupole moment characterized by the dimensionless real 
constants p and g, respectively, in an external electromagnetic field reads 

(K2-T2)$,fTyT,~“+i€~CLF,y$”--(PPQyP, E g  4- Q M v ~ p ) $ y = o  (2.1) 
K 

where T, = ia, -EA,, a,, = a,FP and we have already omitted terms quadratic in 
QFY which vanish in a laser field due to F,Jp’ = 0. Equation (2.1) incorporates the 
subsidiary condition 

We specialize now to an external plane-wave field 

Ap(x)= aei,Ai(S), 5 = kx, 
ke, = 0, e.e. ‘ I = -6.. ‘I’ (i = 1,2). 

Using an ansatz with a Volkov exponential 

CCzblp) = ~ x P (  -ipx +- dtr(-2pA(5’)  EA^(,$^)))*,(() 
inserting (2.2) into (2.1) and introducing the quantities 

ie 

2Pk 

Dj= K k , V ,  Di =pke,,W +(pi -eaA,)k,V 

we arrive at the simple system of equations 

D; = .FiDi, 0: = - E D 3  

(2.31 

(2.51 

(2.61 
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d * p a e  denotes differentiation with respect to 5. (2.6) is almost identical with the 
obtained earlier (I(12)). The essential differences are that Si is now complex 

dwnds on p .  The latter point will turn out to become crucial for the question of 
propagation. 

P 

we find again that the positive quantity 
3 

i = l  
K =  DjD? 

k m t .  

*wave with circular polarization (MCP). Rewritten in terms of 
specid solutions of the system (2.6) can be obtained in the case of a monochromatic 

di = yAi - iS6, X = djDi,  Y = F,Di (2.9) 

kwem (2.6) has constant coefficients. The solutions are proportional to exp(iA5) 
rhae A is specified by 

A3-(1+y2+S2)h-2y6=0 (2.10) 

&real zeros for all values of y and 6. For a monochromatic linearly polarized (MLP) 
@wave the system (2.6) is reminiscent of Mathieu’s differential equation. Due to 
hpet’s theorem there are solutions of the form 

Dj = e’**d,([) 

*it6nodic 6, di(5+2a) = dj(5) and, as a consequence of (2.8), real A. If y = 0, ie 
P“1, the system is immediately solved for arbitrary F and yields (Fl = F, F2 = 0) 

D, = d3 e-i6F + dl eisF 

D, = d3 e-isF- dl elSF (2.11) 

D2 =constant. 

la this case we have a periodic solution for periodic E Analogy with Mathieu’s 
*h*nsWests that this happens also for other particular values of y and 6. 

w c h w i n g e r  equation 

me kta-schwinger equation implies the constraints (Velo and Zwanziger 1969a) 
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men these constraints are resubstituted, the equation takes the following f o m , w  
is a true equation of motion 

(3.3) has to be solved for the U and i components and the U component? is thenob- 
from (3.2). The solution is most conveniently achieved by splitting off the volirop 
exponential as above (equation (2.41, where 'P&(O now denotes a spinor-yector) 
making use of the projection technique introduced earlier (Becker and Mitter 1974). 
The quantities ( i  = 1,2) 

1 
j+i)(t)= yo(v(pi - e d i ) q v - * i )  (3.4) 

are found to satisfy a system of first-order differential equations where the algebrai 
reduced to 1, yi, U = iy,yz. With an amatz 

Mi) = (ac0+ bi'yk + c(i)c)yv$o (3.9 

where Jl0 denotes a constant spinor, the system reads explicitly 

Ea c2a2pk v"- (I=- 

K' 9 K 4  ' 
(3.7) 

So we have eight scalar functions as is necessary for the description of spin $ p h d s  
The remaining components of 'PF(,$) can be obtained from these by purely algebd 
operations. 

Both in the MCP case and for linear polarization the system (3.6) can be further 
reduced. In the MCP case, for 

A, = Ai(~(i)*c(i)), 

C, = Ai(Fk *iAk)bi), 

B, = F.(a(i)*c(i)) 

D, =&(Fk *iAk)bt) 

we obtain WO systems of four equations, each, with constant coefficients. w3b an 

f we use the following notation for the light-like components of a vector ap: 

where n,, tiN, e, are defined by the plane-wave field (2.3) 
a, = tiNap, a, =",,a', ai =-e. a* 

ICI 

n " = - k P = ~ ( l , n ) ,  1 1 a,=- " 1  
w J2 J2(L -4. 
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i(p -a)(] the characteristic polynomial becomes leaed 
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10 2 
i 5 2 ~ 1 - p 2 ( 2 p 2 -  i+tv )*cL(2p+~!y2)+p4-p2(1+,  v 2 ) ~ ; v 2 p + ; v 4  =o, 

p = a H  (3.8) 

ScmaosOfwhichare always real. For linear polarization (F, = F, F2 = 0) the reduction 
@for the combinations 

A - u ( l ) + i c ( 2 )  1 
A, - (ac1’-ic‘2’), 2 -  -3 

A;f(u/d3)FA2+2iaF2A4= 0. 

&other system obtained for 

4 

1 AiAT =constant 
i = l  

(3.10) 

dh the consequence that, as in the MLP vector case, solutions of the form 
h-exp(iAt)ai(,$) with periodic ai have real A. 

Forthe constant crossed (cc) field case ( F =  1) we have Ai -exp(iA() with A given 
k 

A4+4aA3 +A2(4a2-9~2)  -?V’~A + ~ v ~ ( ~ v ~ - ~ c Y ~ )  = O (3.1 1) 

MfOur real solutions for any values of a and U. 

h a h n  behaviour of the solutions 

‘law of dispersion which governs the propagation of the particles, ie the relation 
h e n  the components of momentum replacing p2 = K’ in the external field, is 
*by Fourier transforming the wavefunctions (2.4) and (3.4), respectively 

P 1 2 = K  2 . (4.1) 

‘Qeemernal field is monochromatic this can be done explicitly by expanding the 
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fielddependent part of the exponential according to 

1 for MCP A I  =cos 6, A2 = -sin (, where (e” = (Ea /pk) (p ,  +ip2), 

1 for MLP A ,  =cos 6, A2=0 ,  

dm e’“ exp[ $ (6- m)] c$ (z (m -$-)I 
for cc A, = 5, A2 = 0, where z = (2pk/~’a’ ) ’ /~  and c$ is the Airy I function in the notation of Ritus (1972). 

All solutions obtained so far for the remaining part *,,([) are sums of terms propor. 
tional to 

eiA(d([) = Zdn ei(A+n)f (43) 

where the periodic part has been expanded in a Fourier series. In all cases we obtain for 
the law of dispersion 

K ‘ ( 1  + U’) MCP 

( p m + , , + A k ) ’ = K ~ =  K ’ ( ~ + $ J ’ )  MLP (4.41 

1 . 2  cc. 

Here pm+,, = p + ( m  + n ) k  denotes the Zeldovich (1967) quasi-momentum. ObiodY? 
all quasi-momenta fulfil the same law of dispersion and therefore from now on the index 
on p will be omitted. In all cases of special interest we will have 

A =Ao+T- Pk 
20’ (4.5) 

where A. is independent of p and may be absorbed in the definition of the qua- 
momentum. 

The group velocity now turns out be 

with n a unit vector in the direction of k, ie k,, = ~ ( l ,  n). In the directions Parallelcii 
antiparailel and transverse to the wavevector n, equation (4.6) reduces to (up totenns of 
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(4.7) 

rberep=IpI. From (4.7) the limiting velocities vcr, can be read off while the relative 
of the next-to-leading term determines whether the modes are normal or m&. n e  results are summarized in the following table: 

P-n pn = O  

r>i um = 1 or om< 1 (tachyonic) 
i>r>o u m = l o r u m < l  
o>r>-i um= 1 or um> 1 
r<-1 um = 1 (tachyonic) or um> 1 

um< 1 
vm< 1 
um> 1 
no propagation 

'Wetwovaluesin the first column correspond to the different signs in equation (4.7). In 
btransverse direction in both cases the same absolute value of the limiting velocity 
obtains. For I-= l(r= -1) the limiting velocities vanish (become infinite) in particular 
M o n s .  

?be discussion of the propagation behaviour of the spin 1 and $ particles now 
amounts to writing down the respective values of I'. We have tacitly assumed that r is 
d. In fact, all characteristicexponents corresponding to the solutions obtained in 90 2 
and3 fulfil this requirement, which is necessary for hyperbolicity. The vector meson 
ithoutquadrupole moment behaves perfectly causal: in the MCP case the characteristic 
Wnents A = 0, *d( 1 + y2) which are the solutions of (2.10) do not depend on pk and 
mesolutionsfor MLP are periodic, ie r = 0 in both cases. For non-vanishing quadrupole 

the m e  y = 0, ie p = 1, is distinguished by its simplicity. For MCP we have 
* = O $ * ' h  +a2) which fits the ansatz (4.5) for either small or large S. In the latter case 

r=kvg(;). 2 

(4.8) 

%isthelimit, even for y f 0, if p k  becomes large. So we have all kinds of peculiarities 
a r b e d  above. The loss of hyperbolicity which occurs if r<-1 agrees with a 
YMtheorem due to Vel0 (1975). This theorem states hyperbolicity of a system 
*isequivalent to (2.1) under Some conditions which reduce in the plane-wave field 
fa to 

%$elds r2< 1 as a sufficient condition for hyperbolicity. The fact that (equation 
14*')) linear with respect to v in connection with the preceding table reflects an 

i 'doanozae much sense to discuss the whole dependence on p since in general (4.5) will turn out to be 
PSdqforlarge A which in turn generally means large p. 
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observation made by Jenkins (1973b) for spin 1 theories: if the limiting velocitystap 
below the speed of light for some value of the coupling constant it exceeds it fork 
opposite value. 

On the other hand for MLP and y = 0 we have the periodic solutions (2.1 1) whidQ 
not show any inconsistencies for arbitrary values of r. The solutions are M* 
non-periodic as soon as y # 0. In the limit of large pk ,  however, if y can be ne&wb 
comparison to 6, we expect the solutions to approach again (2.1 1). This Would- 
that the Limiting velocities agree with the speed of light. Tachyonic modes Willprob@ 
exist. 

For spin particles and MCP we have in the limit of large a two double zerosof(3.8~ 
so that A = 0, -2a. We recover completely the results of Vel0 and Zwandger (196%): 
an ordinary ray (A = 0) with a causal and an extraordinary ray 

with an acausal limiting velocity as well as loss of hyperbolicity 

(4.91 

if r<-1. Notetbt 
definite sign of in contrast to equation (4.8). The extraordinary ray exhibits tachyonic 
behaviour in either of the parallel directions. 

For MLP we have no explicit solutions of the system (3.9). Generally, the solutim 
will be non-periodic. As in the vector MLP case, however, if in the limit of very large$ 
the terms proportional to Y can be neglected, we have the simple periodic solutim 
A,,2=constant, A2,4-exp(-2ia I F'). This argument, if correct, would indicate a 
causal limiting velocity but not exclude tachyonic modes. 

For the constant crossed field the results agree with those for MCP. For large a. 
equation (3.1 1) has the double zeros A = 0, -2a, so that r is given by (4.9) as before. 

5. Condosions 

For a vector meson with quadrupole coupling and a spin 3 particle in an external 
field we have recovered all the results of Vel0 and Zwanziger: existence of ordinwnY 
and extraordinary rays which exhibit acausal propagation. If the external field ex& 
some critical value some modes fail to propagate in the transverse direction and/or 
become tachyonic with a causal limiting velocity in the longitudinal directions. 

In the case of linear polarization the results are quite different. In particulara 
should compare the results for the vector case with y = 0, where we have an exPfid 
solution for both polarizations. Whereas for circular polarization the ampieE 
catalogue of inconsistencies is observed, no vestiges of the locally acausal structureof 
the ray cones can be seen for linear polarization. Obviously the structure has been 
averaged out in calculating the group velocity. This does not necessarily mean thar 
acausal behaviour cannot be observed even in this case: one would have to use wakllM: 
packets which are localized to approximately the region of one wavelen%b of 
plane-wave field in their frame of reference. For such wave packets the conWtoi 
group velocity becomes meaningless. Since the wave packets would decay VeVrapi@ 

reason for the different behaviour in circularly and linearly polarized fields aPptlanm 
be that the circularly polarized field resembles more a constant field than the lin@'b 
polarized one, Since its absolute value is constant. Hence its influence cannotk' 

it is not clear, however, if acausal behaviour can be observed even in principle. 7% 
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fagdout and the results agree, in fact, with those of the constant crossed field 

absence of inconsistencies for linear polarization is also interesting 
r 9 ~  to an equivalence shown by Jenkins (1973a, b) for the vector case: the ray 
flof&classical field equation agree with the light cone if and only if the S operator 
ibqmtized theory is Lorentz invariant, ie normal independent. The fact that the 
#-mal structure of the ray cones is not reflected in the group velocity, raises the 
@to what extent the resulting non-covariance of the S operator can be observed 
,$matrix elements. 

fidmuld be noted, finally, that a further difficulty, namely a non-covariant loss of 
&nts in a particular frame of reference (Jenkins 1974), does not show up in the 
sofan external plane-wave field. 

#* of spin f. 
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k W  and Mitter H 1974 J. Phys. A: Math., Nucl. Gen. 7 1266-73 
-1975Acra Phys. Austr. to be published 
MmvFIand Radyuk A F 1975 Sou. J. Nucl. Phys. 20 274-6 
htis 1 D 1973a Nuax, Cim. Lett. 7 559-62 
-1573bJ. Phys. A: Math., Nucl. Gen. 6 1935-42 
-1974 J. Phys. A: Math., Nucl. Gen. 7 1129-34 
!#em P M 1974 Phys. Rev. D 9 365-9 
b P M a n d  Seetharaman M 1973 Phys. Rev. D 8 1815-6 
&to?& P and Seiler R 1971 Phys. Rev. D 4 359-66 

~ ~ ~ Y a n g a n d  Yildiz A 1971 Phys; Rev. D 4 3643-8 

bGMZwann'ger D 1969a Phys. Rev. 186 1337-41 
-196% Phys. Rev. 188 2218-22 
-1971 fiats in Mathematics and Natural Sciences, vol4 ed A S Wightman (New York: Gordon and 

i'diovDM 1935 Z. Phys. 94 250-60 
kldovicfiyaB 1967 SOU. Phys.-JEW 24 1006-8 

1972 Ann. Phys., N Y  69 555-82 

&GI975 Comm Math. P h p .  43 17140  

Bnacfi) 


